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A B S T R A C T

ncRNA-protein interactions (ncRPIs) play an important role in a number of cellular processes, such as post-
transcriptional modification, transcriptional regulation, disease progression and development. Since experi-
mental methods are expensive and time-consuming to identify the ncRPIs, we proposed a computational method,
Deep Mining ncRNA-Protein Interactions (DM-RPIs), for identifying the ncRPIs. In order to descending dimen-
sion and excavating hidden information from k-mer frequency of RNA and protein sequences, using the Deep
Stacking Auto-encoders Networks (DSANs) model refined the raw data. Three common machine learning al-
gorithms, Support Vector Machine (SVM), Random Forest (RF), and Convolution Neural Network (CNN), were
separately trained as individual predictors and then the three individual predictors were integrated together
using stacked ensembling strategy. Based on the RPI2241 dataset, DM-RPI obtains an accuracy of 0.851, pre-
cision of 0.852, sensitivity of 0.873, specificity of 0.826, and MCC of 0.701, which is promising and pioneering
for the prediction of ncRPIs.

1. Introduction

Non-coding RNA (ncRNA) plays an important role in many biolo-
gical processes, especially when ncRNA bind with a variety of proteins,
such as post-transcriptional modification, transcriptional regulation,
protein synthesis, human disease and so on. Although the interactions
between ncRNA and protein in the regulation of gene expression is
important, but only a few number of ncRNA-protein interactions
(ncRPIs) have been studied. Some experimental methods have been
developed into analyze ncRPIs, for example, HITS-CLIP, (Weyn-
Vanhentenryck et al., 2014), PAR-CLIP (Friedersdorf and Keene, 2014),
RIPiT-Seq (Guramrit et al., 2014) and RNAcompete-S (Cook et al.,
2017). However, these experimental methods are time-consuming, ex-
pensive and labor-intensive. It is necessary to develop computational
methods to predicting ncRPIs.

Several computational methods have been proposed to predict
ncRPIs, which can be divided into semi-supervised and supervised
methods the former trained on a combination of labeled and unlabeled
data and the latter trained on datasets that include labels. Some re-
searchers developed semi-supervised methods for predicting RNA-pro-
tein interactions. For example, Liu et al. proposed LPI-NRLMF method
(Liu et al., 2017) for predicting lncRNA-protein interactions by neigh-
borhood regularized logistic matrix factorization in 2017. Zhao et al.

proposed IRWNRLPI method (Zhao et al., 2018a, 2018b), integrating
random walk and neighborhood regularized logistic matrix factoriza-
tion for lncRNA-protein interactions prediction in 2018. In the same
year, Zhao et al. proposed LPI-BNPRA method (Zhao et al., 2018a,
2018b) using the bipartite network projection recommended algorithm
to identify lncRNA-protein interactions. In the same year, Chen et al.
proposed BNPMDA method (Chen et al., 2018). The above methods
extraced lncRNA and protein sequence similarity matrixes, used semi-
supervised algorithm to predict lncRNA-protein interactions and all of
them obtained high predictive accuracy. They performed well only for
predicting interactive pairs but performed weakly for predicting non-
interactive pairs. In the same way, supervised methods are essential for
predicting ncRPIs. In 2011, Pancaldi et al. trained support vector ma-
chines (SVM) and random forest (RF) models to predict mRNA-protein
interactions in yeast, extracting secondary structure and physical
property of protein and RNA as features, this approach performed well
for RNA binding proteins with known targets (Vera Pancaldi, 2011). In
the same year, Bellucci et al. proposed CatRAPID method to predict
mRNA-protein interactions, which extracted features from the sec-
ondary structure of protein and RNA, hydrogen bond and Van Edward
force, to calculate the binding preference of polypeptide and nucleotide
chain (Bellucci et al., 2011). In 2013, Lu et al. developed the method of
lncPro, which extracted the biological properties of RNA and protein
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(Lu et al., 2013), such as the secondary structure of RNA and protein,
the hydrogen bond between RNA and protein, and so on. In 2015,
Suresh et al. trained a SVM classifier called RPI-Pred basing on se-
quence and 3D structure of RNA and protein (Suresh et al., 2015). In
2016, Pan et al. provided IP-Miner method using the Deep Stacking
Auto-encoders Networks (DSANs) and stacked ensembling strategy to
predict ncRPIs (Pan et al., 2016). In 2018, Hu et al. proposed HLPI-
Ensemble method (Hu et al., 2018) for identifying lncRNA-protein in-
teractions in human only, which integrated three common machine
learning algorithms, SVM, RF and Extreme Gradient Boosting (XGB),
which performed well for predicting lncRNA-protein interactions in
human. In the same year, Chen et al. Proposed BNPMDA method (Chen
et al., 2018) for MiRNA-Disease Association prediction (BNPMDA)
model based on the rating-integrated bipartite network recommenda-
tion and the know miRNA-disease associations.

Nowadays several benchmark datasets have been constructed, some
of them are small-scale datasets, such as RPI369, RPI488. SVM and RF
performed better on those small-scale datasets. But some of them are
larger-scale datasets, such as RPI2241, RPI13254. Neural network
performed better on these larger-scale datasets. And with the devel-
opment of deep learning, all kinds of neural networks (such as a con-
volutional neural network (CNN)) are widely used in many areas, for
example, speech recognition (Achanta and Gangashetty, 2017), image
processing (Pham et al., 2018), etc.. Thus, it is necessary and mean-
ingful to integrate SVM, RF and CNN together to identify ncRPIs, by
integrating the classifier can perform well not only on small-scale da-
tasets but also performs well on large-scale datasets. In the study, we
developed DM-RPIs (Deep Mining ncRPIs) for predicting ncRPIs. An
ensembling classifier was trained to predict ncRPIs by sequence in-
formation. Firstly, DSANs was trained to preprocess raw data. Then,
three individual classifiers, SVM, RF, and CNN, were separately trained
to identify ncRPIs. The performance of three individual classifiers were
comparable, the predictive accuracy increased about 15% than without
DSANs to preprocess raw data on RPI369 and RPI2241. Finally, the
three individual classifiers were integrated using stacked strategy and
tested using 5-fold cross validation on RPI369, RPI488, RPI1807,
RPI2241 and RPI13254, respectively. Overall, DM-RPIs is superior to
the three individual predictors in predicting ncRPIs.

2. Materials and methods

2.1. Source of the datasets

We collected five datasets from the published papers, including
RPI2241, RPI369 (Muppirala et al., 2011), RPI1807 (Suresh et al.,
2015), RPI13254 (Pancaldi and Bähler, 2011) and RPI488 (Pan et al.,
2016) as Table 1 shown. RPI2241 is generated by extracting 943 pro-
tein-RNA complexes from The Protein-RNA Interface Database (PRIDB)
(Lewis et al., 2011), the RNA include rRNA, ncRNA, mRNA and so on.
Interactions are generated by using distance threshold (8 Å) on the
dataset. RPI369 is a subset of RPI2241, which removes all RNA-protein
interactions that contain ribosomal protein or ribosomal RNA. Above
two datasets were published including positive pairs only, the negative
pairs were generated at random. The RPI1807 was constructed by
Suresh (Suresh et al., 2015), whose RNA-protein interactions were

extracted from the Nucleic Acid Database (NDB) (Narayanan et al.,
2014) and the protein-RNA interface database (PRIDB) (Lewis et al.,
2011) using an 3.4 Å distance cut-off. RPI13254 is a large-scale non-
structure-based experimental dataset, which including 13,254 positive
pairs and 5172 negative pairs. We randomly selected 5172 positive
pairs, which were balanced with the negative pairs. RPI488 is a struc-
ture-based lncRNA-protein interactions dataset, and the interactive
pairs were selected with 5 Å cut-off.

2.2. Conjoint 3-mer residues for protein and 4-mer nucleic acids for RNA

20 amino acids are divided into 7 groups according to their dipole
moments and volume of their side chain: [A, G, V], [I, L, F, P], [Y, M, T,
S], [H, N, Q, W], [R, K], [D, E] and [C] (Pandey et al., 2018). The
protein chain is represented by conjoint triad features (CTF), where
each feature represents normalized frequency of 3-mer in the 7-letter
representation of the protein sequence, resulting in 343 (7× 7×7)
dimensional feature vectors. Similarly, each RNA chain is represented
by normalized frequency of 4-mer sequence fragment. Thus, each RNA
chain is quantified by 256 (4×4×4×4) dimensional feature vector.
After the above steps, we got a vector of 599 (343+ 256) dimensions to
represent each interaction.
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In the Formula (1), n is 343 or 256 standing for the dimension of a
vector, Ni stands for the amount of the i-th feature.

2.3. Data preprocess

The raw features which were obtained from above were inputted
into the DSANs model (Fig. 1), so that we can obtain low dimensional
features and remove noise among data. A DSANs model was trained
including 3 hidden layers and fine tuning, the number of neurons for 3
hidden layers in DSANs model is 256,128, and 64, respectively. The
protein and RNA raw sequence features are inputted the DSANs model.
At last we obtained the vectors of 128 (64+ 64) dimensions for each
pair via the model, features were lower dimensions (128) than before
(599). It was unsupervised in 3 hidden layers, the labels needed not to
participate. In the fine tuning process, it is supervised to update para-
meters by comparing the really labels with the predicted results. As this
process as shown in Fig. 1, we could obtain low dimensions and re-
presentative features which can improve the performance of the
method for predicting ncRPIs.

2.4. The brief introduction of SVM, RF and CNN

SVM is a popular supervised machine learning method, and it is
applied widely for many binary classification problems. The RBF was
selected as the kernel function. The SVM classifier was trained to effi-
ciently predict ncRPIs with C= 32 and γ=0.125. RF is a simple, easy
to implement and little computational storage algorithm. It shows well
performance in many classified tasks and be used more and more
widely. In the predictor, we selected n_estimators, max_depth, min_-
samples_split, min_samples_leaf and max_features with 100, 13, 40, 6
and 13, respectively, by grid search. CNN is a kind of widely used
neural network in image processing. It is usually including convolu-
tional layer, pooling layer, batchnormalization layer and so on. In the
study, a 21 layers CNN classifier is constructed, including 7
BatchNormalization layers, 5 Conv1D layers, 3 Dropout layers, 3 Dense
layers, 2 MaxPooling layers, 1 GlobalAveragePooling layer, we chosen
‘Adam’ function as optimizer, the learning rate was 0.0005. The last
dense layer includes 2 neurons, ‘softmax’ function is the activation
function of the layer, so that the CNN classifier performs two classified
task by the layer.

We used stacked ensembling strategy to integrate three individual

Table 1
The more information about 5 datasets.

Datasets Interactions Of RNAs Of proteins Positive+negative Cut-off
(Å)

RPI2241 2241 443 952 2241 8
RPI369 369 332 338 369 8
RPI1807 1807 1078 1807 1807+1436 3.4
RPI13254 13,254 4500 42 13,254+5172 –
RPI488 243 25 247 243+245 5
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predictors, SVM, RF and CNN. Compared to general averaging en-
sembling strategy, the stacked ensembling strategy performed better
(Pan et al., 2016) for predicting ncRPIs, which is denoted as

= ± =
+ −

P y
y

x
w x

( 1 | ) 1
1 exp( )w T (2)

where x is the vectors of outputted probabilities from three single
classifiers, y is the corresponding label of every interactive pair, and w
is the weight vectors of the three individual classifiers.

2.5. Performance evaluation

We trained three individual classifiers, SVM, RF and CNN, and one
ensembling classifier, DM-RPIs. These classifiers were calculated by 5-
fold cross-validation from six measures, accuracy, precision, sensitivity,
specificity, F-measure and MCC. In the following formulas, the TP is the
number of true positives, meaning the positive interactions predicted as
positive interactions. FP is the number of false positives, meaning the
negative interactions predicted as positive interactions. TN is the
number of true negatives, meaning the negative interactions predicted
as negative interactions. FN is the number of false negatives, meaning
the positive interactions predicted as negative interactions. In addition,
we made the Receiver Operating Characteristic (ROC) curve on
RPI1807, RPI2241 and RPI13254, and calculated the area under the
ROC curve as the AUC value.
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3. Result

3.1. Comparison between three individual classifiers and the ensembling
classifier–DM-RPIs

On RPI369, the results of six evaluation indicators of three in-
dividual classifiers (SVM, RF, CNN) and one ensembling classifier, DM-
RPIs are showed in Fig. 2. Three individual classifiers perform differ-
ently in different measures. In these three individual models, the RF
classifier achieves highest performance with the accuracy of 0.760,
precision of 0.772, specificity of 0.788 and MCC of 0.540, respectively.
The CNN classifier achieves highest performance with the sensitivity of
0.859 and F-measure of 0.770. It obtains the highest score with sensi-
tivity of 0.859, which increases by about 10% over SVM of 0.750 and
RF of 0.738. The CNN classifier performs worst with the minimum
specificity of 0.632, which descends by about 10% over SVM of 0.763
and RF of 0.788. It indicates that the CNN classifier can predict positive
interactions effectively, but its performance is fairly worse for pre-
dicting negative interactions. On the whole, it implies that three in-
dividual classifiers have low correlation on predicting ncRPIs, which is
relatively promising to integrate them together (Pan et al., 2016). By
further comparing, the ensembling classifier DM-RPIs performs a little
better than the three individual classifiers with accuracy of 0.791, F-
measure of 0.797 and MCC of 0.582, respectively. Especially the MCC
value which is improved by 10% approximately over three individual
classifiers. It indicates that the ensembling classifier could identity
ncRPIs effectively comparing to an individual classifier. It is fairly
promising to integrate different individual classifiers together.

As is shown in Fig. 3, on RPI488, the RF classifier performs best with
accuracy of 0.853, precision of 0.879, specificity of 0.902, F-measure of
0.851 and MCC of 0.726, respectively. Only the sensitivity is lower than
the CNN classifier of 0.952. The SVM classifier achieves with accuracy
of 0.851, precision of 0.846, specificity of 0.852, F-measure of 0.849
and MCC of 0.710, respectively, which are a little worse than RF clas-
sifier, besides the sensitivity of 0.848 is a little higher than RF of 0.818.
The predictive results of CNN classifier are far below than other clas-
sifiers with accuracy of 0.561, precision of 0.520, specificity of 0.201, F-
measure of 0.675 and MCC of 0.248, respectively, only sensitivity of
0.952 is above than other classifiers by 10% approximately. The reason
may be that the RPI488 is relatively small-scale including only 243
interactions, it is too small to fit an effective deep learning network
model. DM-RPIs achieves better results with accuracy of 0.851,

Fig. 1. The Deep Stacking Auto-encoders Networks and fine tuning.
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precision of 0.848, sensitivity of 0.849, specificity of 0.853, F-measure
of 0.849 and MCC of 0.711, respectively. On the whole, the SVM
classifier, the RF classifier and DM-RPIs can identify ncRPIs effectively,
and achieve relatively substantially on RPI488.

ROC curve of RPI1807 is shown in Fig. 4, RF and DM-RPIs achieve
the best AUC of 0.99, both SVM and CNN achieve the AUC of 0.98. no
matter the three individual predictors SVM, RF and CNN, or ensemble
predictor DM-RPIs, all of them obtain ideal AUC results, which is close
to 1.

We further tested DM-RPIs on other two large-scale datasets, which
are RPI2241 and RPI13254. RPI2241 includes 2241 interactive pairs
and 2241 non-interactive pairs, which is structure-based dataset. On
RPI2241, DM-RPIs performs best with AUC of 0.92 (Fig. 5), which ex-
ceeds other individual classifiers in identifying ncRPIs. In addition, we
downloaded the RPI13254, which is a large-scale non-structure-based
experimental dataset. It covers 13,254 positive interactions and 5172
negative interactions, but we only selected 5172 positive interactions

Fig. 2. Results comparison on three individual classifiers and DM-RPIs on RPI369.

Fig. 3. Results comparison on three individual classifiers and DM-RPIs on RPI488.

Fig. 4. The ROC curve of three individual classifiers and DM-RPIs on RPI1807.
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from 13,254 positive interactions in order to balance the negative in-
teractions. On the non-structure-based dataset RPI13254, DM-RPIs still
achieves a little better than other individual classifiers with AUC of 0.79
(Fig. 6), which indicates that it is fairly promising to combine in-
dividual predictors together.

On the whole, individual classifiers perform differently on different
datasets. On RPI1807, RF achieves the best AUC of 0.99 (Fig. 4). On
RPI2241, the SVM get the best AUC of 0.91 (Fig. 5). However, on
RPI13254, CNN get the best AUC of 0.78 (Fig. 6). On the three datasets,
the three individual classifiers get the best results respectively, and
none of the three individual classifiers can surpass other two on all
datasets. But on all of three datasets, DM-RPIs gets the best AUC of 0.99,
0.92, 0.79, respectively (Figs. 4–6), surpassing all of three individual
classifiers. The reason is that stacked ensembling strategy can improve
the predictive performance (Pan et al., 2016), which is demonstrated by
the performance of DM-RPIs on predicting ncRPIs.

3.2. Comparison with previous methods for predicting ncRPIs

Because the best prediction ability of DM-RPIs, we compared DM-
RPIs with previous methods, which are based on sequence information.
RPISeq-RF and RPISeq-SVM was both from the paper of Muppirala
(Muppirala et al., 2011), but RPISeq-SVM performed worse than
RPISeq-RF on both RPI369 and RPI2241.Thus we only compared the
performance of RPISeq-RF with DM-RPIs in the work. The negative
interactions of RPISeq-RF and lncPro methods have not been published
in their papers, their papers only published the positive interactions, we
could not compare the results from original papers. In the Table 2, the
results of RPISeq-RF and lncPro are from the paper of Pan (Pan et al.,

2016), whose positive interactions and negative interactions are same
as ours.

As shown in Table 2, on RPI1807 DM-RPIs obtains high score more
than 0.900 no matter which measures, but DM-RPIs performs slightly
worse than RPISeq-RF and IP-Miner. IP-Miner performs best with each
measure more than 0.950, which are fairly perfect results on identifying
ncRPIs. On the whole, on RPI1807 all the four methods achieve high
performance with AUC more than 0.900. The mainly reason is that
RPI1807 is constructed strictly, all methods perform well almost on
RPI1807 dataset. The reason is that RPI1807 dataset was constructed
fairly strictly by Suresh (Suresh et al., 2015), who set up the threshold
(3.4 Å) to distinguish the positive interactions and negative interac-
tions, the threshold is the distance between of two atoms, one from
protein and other from RNA. However, the RPI488 dataset was con-
structed by 5 Å, RPI369 and RPI2241 are 8 Å. Moreover, negative in-
teractions of RPI369 and RPI2241 were generated by randomly, how-
ever, the negative interactions of RPI1807 were determinate by setting
the threshold greater than 3.4 Å. Lastly, in order to reduce the bias of
sequence homology, the cut-off of redundant sequences set up the
threshold 30%, RPI369 and RPI2241 are also 30%, but RPI488 set up
90%. This is why RPI1807 perform well in different measures regard-
less of classifiers. On RPI2241, DM-RPIs obtains the best results in each
measure with accuracy of 0.851, precision of 0.852, sensitivity of
0.873, specificity of 0.826 and MCC of 0.701, respectively. Compared to
RPISeq-RF and lncPro, the performance of DM-RPIs significantly in-
creases in each measure, RPISeq-RF and lncPro are individual classifiers
and without features preprocessing, DM-RPIs is ensembling classifier
and using DSANs to preprocess raw features. It indicates that it is fairly
effectively to adopt ensembling strategy and DSANs. The results of DM-
RPIs increase about 3% over IP-Miner on accuracy and precision, which
is also ensembling classifier and applies the DSANs to preprocess raw
features. It indicates that DM-RPIs is more effective than IP-Miner to
identify ncRPIs. On RPI369, DM-RPIs performs better than previous
methods with accuracy of 0.791, precision of 0.772, sensitivity of 0.824
and MCC of 0.582, respectively, besides the specificity (0.757) is worse
than IP-Miner (0.791). In conclusion, it indicates that DM-RPIs is fairly
effectively to identify ncRPIs. It is fairly promising to apply ensembling
strategy in DM-RPIs for predicting ncRPIs.

4. Discussion

A new classifier, DM-RPIs, was proposed to predict the ncRPIs using
only sequence information. It integrated three individual classifiers,
SVM, RF and CNN. In the preprocessing stage, the DSANs was applied
to process the raw features, which can mine the hidden information
from the features effectively, reduce the dimension of the features and
remove the noise which perhaps interferes the predictive results among

Fig. 5. The ROC curve of three individual classifiers and DM-RPIs on RPI2241.

Fig. 6. The ROC curve of three individual classifiers and DM-RPIs on RPI13254.

Table 2
Performance comparison with previous sequence-based methods.

Datasets Methods Accuracy Precision Sensitivity Specificity MCC

RPI1807 DM-RPIs 0.967 0.968 0.975 0.957 0.933
RPISeq-RF 0.973 0.960 0.968 0.984 0.946
lncPro 0.969 0.960 0.965 0.984 0.938
IP-Miner 0.986 0.978 0.982 0.993 0.972

RPI2241 DM-RPIs 0.851 0.852 0.873 0.826 0.701
RPISeq-RF 0.646 0.663 0.652 0.630 0.293
lncPro 0.654 0.669 0.659 0.640 0.310
IP-Miner 0.824 0.836 0.833 0.812 0.650

RPI369 DM-RPIs 0.791 0.772 0.824 0.757 0.582
RPISeq-RF 0.704 0.707 0.705 0.702 0.409
lncPro 0.704 0.713 0.708 0.696 0.409
IP-Miner 0.752 0.713 0.735 0.791 0.507

The bold values are the best results of four kinds of methods on every data. For
example,the first bold value, 0.986 represent that IP-Miner obtained the highest
accuracy on RPI1807.
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the data (Lyons et al., 2015). In DM-RPIs, we used the stacked en-
sembling strategy, that the outputs predictive probabilities of the three
individual classifiers were served as training data for the ensembling
classifier. We adopted the logistic regression to further improve the
classifier performance. The performance of a single predictive classifier
is limited, by using ensembling strategy with multiple single classifiers
can improve the overall performance of the model. DM-RPIs performed
better than previous methods on RPI369 and RPI2241, and it also ob-
tained ideal results on other large-scale datasets, such as RPI13254. On
the whole it is a pioneering and effective classifier which integrates
SVM, RF and CNN models together.

The k-mer frequency indicates sequence-binding preference of RNA-
protein interactions, it has been demonstrated that the higher frequency
this k-mer sequence exists in a sequence, the higher probability it is a
binding motif (Jungkamp et al., 2011). For secondary structures of RNA
and protein, experimental data is lacking and theoretical predictions is
not accurate enough and existing some limits (Liao et al., 2010). For
example, the method of RNAfold limits the length of the sequence on
7500 nucleic acids (Langdon et al., 2018). The method of mfold only
predicts one RNA secondary structure for one time, which can’t batch
process in the engineering (Wiese and Hendriks, 2006). For the 3D-
structures of RNA and protein, it is flexibility, unstable and uneasy to
obtain (Bressanelli et al., 2000).Thus it is difficult to obtain the 3D-
features accurately for training a model. For example, Mariusz et al.
presents a novel method of the fully automated prediction of RNA 3D-
structures from a user-defined secondary structure (Mariusz et al.,
2012), but the method is limited on 500 nucleic acids only, this is
unsuitable in the study whose most of RNAs are more than 500 nucleic
acids. Moreover, the method needs to obtain secondary structures of
RNA, which is unable to obtain accurately enough as mentioned above.
We extracted sequence features only to train the model. Compared to
structure features, the sequence features is easy to obtain and accurate
enough for RNA and protein. Moreover, the k-mer frequency carrys out
abundant the sequence-binding motifs information, thus we trained the
model basing on sequence information in the work.

Because deep learning model is able to learn complex and statistical
information from large-scale dataset, DSANs can automatically extract
hidden relationship between RNA and protein. At the start of DM-RPIs
classifier, the dimensions of raw features were reduced from 599 to
128, not only it reduces the computational cost for training the classi-
fier, but also it can obtain representative features from raw data in the
process. The CNN can predict the ncRPIs effectively, we sets 3 as the
length of convolution kernel in the work, the features extracted by
Convolution layers can pay more attention to the local sequence, it is
reasonable in the work because ncRNA-protein interactions is local
binding site, instead of the combination of the whole sequence (Sahiner
et al., 1996). The study of Pan (Pan et al., 2018) also demonstrated the
effect of CNN on identifying ncRPIs.

Different classifiers have different performances on different data-
sets. In the field some of the datasets are large-scale, such as RPI13254.
And some are little-scale, such as RPI488, RPI369. For little-scale da-
tasets, some traditional machine learning, for example, SVM and RF are
good at carrying out classification task, and for large-scale datasets, a
multilayered neural network model can be trained to carry out classi-
fication task more effectively (Ginneken, 2017). Usually only large-
scale and reasonably distributed dataset can train a robust and stable
deep learning network to identify ncRPIs. If a dataset is little-scale, it
perhaps trains an unsound and under-fitting network. Or if a dataset is
not reasonably distributed and only includes a kind of or several kinds
of RNA or protein. For example, the RPI488 only includes long non-
coding RNA and the RPI369 contains only non-ribosomal complexes.
The classifier which is trained by these datasets can only predict the
kind of interactions accurately, but it is worse effective for predicting
other kinds of interactions. A kind of organism exists all kinds of RNA
including ncRNA, miRNA, tRNA and so on, if we want to construct the
interaction network for a kind of organism, we must train a classifier

that can identify all kinds of interactions. In the work we integrated the
SVM, RF and CNN classifiers training a robust and comprehensive
classifier. It has been demonstrated that the classifier is promising to
identify the ncRPIs.

The research is meaningful and widely used, for example, to in-
vestigate the RNA moonlighting and the target protein localization di-
versity based on the RNA-protein interaction data. In 2018, Cheng et al.
developed MoonFinder method to identify of moonlighting lncRNAs
(Cheng and Leung, 2018a, 2018b), MoonFinder is a statistical method
identifying moonlighting lncRNAs without a priori knowledge through
the integration of protein interactome, RNA-protein interactions and
functional annotation of proteins. In the same year, Cheng et al. pro-
posed ncTALENT (non-coding RNA target localization coefficient)
method to quantify the target localization diversity of ncRNAs based on
the ncRNA-protein interaction and protein subcellular localization data
(Cheng and Leung, 2018a, 2018b).

Although DM-RPIs achieved better performance in different mea-
sures, there are still something need to be done in the field. The ne-
gative interactions were generated randomly on some datasets, it is
unreasonable but necessary to balance the positive interactions for
training an effective classifier. Researchers should also construct the
negative interactions not only the positive interactions. It is very useful
and necessary to develop computational methods to predict ncRPIs.
Large-scale dataset is also still necessary to train a more stable and
robust model. And the predictive accuracy remains to be improved for
identifying ncRPIs.

5. Conclusions

We have proposed DM-RPIs method to identify ncRPIs using RNA
and protein sequence information. The DSANs model was trained to
preprocess the raw features, which can descend features dimension and
mine hidden information from raw data. Three classifiers, SVM, RF and
CNN, were separately trained for predicting ncRPIs. At last, we adopted
the stacked assembling strategy to integrate the three individual clas-
sifiers to improve the predicting performance. DM-RPIs outperforms the
other methods based on four datasets, RPI369, RPI488, RPI2241 and
RPI1807.
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